Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dibarium tricadmium bismuthide(-I,-III) oxide, $\mathrm{Ba}_{2} \mathbf{C d}_{3-\delta} \mathrm{Bi}_{3} \mathrm{O}$

Sheng-Qing Xia ${ }^{\text {a,b }}$ and Svilen Bobev ${ }^{\text {a }}$ *
${ }^{\text {a }}$ Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA, and ${ }^{\mathbf{b}}$ State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, Shandong 250100, People's Republic of China
Correspondence e-mail: sbobev@mail.chem.udel.edu

Received 28 October 2010; accepted 9 November 2010

Key indicators: single-crystal X-ray study; $T=120 \mathrm{~K}$; mean $\sigma(\mathrm{Bi}-\mathrm{Cd})=0.001 \AA$; disorder in main residue; R factor $=0.032 ; w R$ factor $=0.073$; data-to-parameter ratio $=17.3$.
$\mathrm{Ba}_{2} \mathrm{Cd}_{2.13} \mathrm{Bi}_{3} \mathrm{O}$, a new bismuthide(-I,-III) oxide, crystallizes with a novel body-centered tetragonal structure (Pearson code $t I 36)$. The crystal structure contains eight crystallographically unique sites in the asymmetric unit, all on special positions. Two Ba , one Cd and two Bi atoms have site symmetry 4 mm , the third Bi atom has $m m m$. and the O atom has $\overline{4} m 2$ symmetry; the second Cd site (2 mm . symmetry) is not fully occupied. The layered structure is complex and can be considered as an intergrowth of two types of slabs, viz. BaCdBiO with the ZrCuSiAs type and $\mathrm{BaCd}_{2} \mathrm{Bi}_{2}$ with the $\mathrm{CeMg}_{2} \mathrm{Si}_{2}$ type.

Related literature

Isotypic compounds are not known; however, there are several compounds whose structures are based on fused CdBi_{4} tetrahedral fragments, including BaCdBi_{2} (Brechtel et al., 1981), $\mathrm{Ba}_{11} \mathrm{Cd}_{8} \mathrm{Bi}_{14}$ (Xia \& Bobev, 2006a), $\mathrm{Eu}_{10} \mathrm{Cd}_{8} \mathrm{Bi}_{12}$ (Xia \& Bobev, 2007), $\mathrm{Sr}_{21} \mathrm{Cd}_{4} \mathrm{Bi}_{18}$ (Xia \& Bobev, 2008). Condensed trigonal CdBi_{5} bi-pyramids and distorted CdBi_{6} octahedra are known for $\mathrm{Ba}_{2} \mathrm{Cd}_{3} \mathrm{Bi}_{4}$ (Cordier et al., 1982; Xia \& Bobev, 2006b). The serendipitous discovery of the title compound was the result of a systematic study of the $\mathrm{Ba}-\mathrm{Cd}-\mathrm{Bi}$ system, inspired from the identification of $\mathrm{Ba}_{3} \mathrm{Cd}_{2} \mathrm{Sb}_{4}$ (Saparov et al., 2008). The compound BaCdSbF (Saparov \& Bobev, 2010) is an example of a structure that epitomizes the BaCdBiO slabs. Recently, the idea that intermetallic oxide-pnictides and fluoride-pnictides could be a widespread class of quaternary solids has been discussed on the examples of $\mathrm{Ba}_{5} \mathrm{Cd}_{2} \mathrm{Sb}_{5} \mathrm{O}_{x}$ ($0.5<x<0.7$) and $\mathrm{Ba}_{5} \mathrm{Cd}_{2} \mathrm{Sb}_{5} \mathrm{~F}$ (Saparov \& Bobev, 2010). Theoretical considerations of non-classical electron-rich networks of the pnictogen elements is proved by Papoian \& Hoffmann (2000). For standardization of the atomic coordinates, the program STRUCTURE-TIDY was used (Gelato \&

Parthé, 1987). For further information on structure types among intermetallic phases, we refer to Pearson's Handbook (Villars \& Calvert, 1991).

Experimental

Crystal data
$\mathrm{Ba}_{2} \mathrm{Cd}_{2.13} \mathrm{Bi}_{3} \mathrm{O}$
$M_{r}=1148.47$
Tetragonal, $14 / \mathrm{mmm}$
$a=4.7396$ (4) £
$c=43.601$ (7) A
$V=979.5(2) \AA^{3}$
Data collection
Bruker SMART APEX
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.137, T_{\text {max }}=0.352$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.073$
$S=1.22$
433 reflections
$Z=4$
Mo $K \alpha$ radiation
$\mu=66.05 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
$0.05 \times 0.05 \times 0.02 \mathrm{~mm}$

5274 measured reflections 433 independent reflections 386 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.066$

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL and CrystalMaker (CrystalMaker, 2009); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the University of Delaware and the Petroleum Research Fund (ACS-PRF).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2421).

References

Brechtel, E., Cordier, G. \& Schäfer, H. (1981). J. Less Common Met. 79, 131136.

Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cordier, G., Woll, P. \& Schäfer, H. (1982). J. Less Common Met. 86, 129-134.
CrystalMaker (2009). CrystalMaker. CrystalMaker Software Ltd, Bicester, England.
Gelato, L. M. \& Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
Papoian, G. A. \& Hoffmann, R. (2000). Angew. Chem. Int. Ed. 39, 2408-2448.
Saparov, B. \& Bobev, S. (2010). Dalton Trans. doi:10.1039/c0dt00595a.
Saparov, B., Xia, S.-Q. \& Bobev, S. (2008). Inorg. Chem. 47, 11237-11244.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Villars, P. \& Calvert, L. D. (1991). Pearson's Handbook of Crystallographic Data for Intermetallic Compounds, 2nd ed. Materials Park, Ohio, USA: American Society for Metals.
Xia, S.-Q. \& Bobev, S. (2006a). Inorg. Chem. 45, 7126-7132.
Xia, S.-Q. \& Bobev, S. (2006b). J. Solid State Chem. 179, 3371-3377.
Xia, S.-Q. \& Bobev, S. (2007). Chem. Asian J. 2, 619-624.
Xia, S.-Q. \& Bobev, S. (2008). Inorg. Chem. 47, 1919-1921.

supplementary materials

Dibarium tricadmium bismuthide(-I,-III) oxide, $\mathrm{Ba}_{2} \mathrm{Cd}_{3}-\delta_{\mathrm{Bi}_{3} \mathrm{O}}$

S.-Q. Xia and S. Bobev

Comment

Our previous work in the $A-\mathrm{Cd}-\mathrm{Bi}$ systems, where the symbol ' A ' is used to denote $\mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}, \mathrm{Eu}$, and Yb , led to the identification of several novel compounds such as $\mathrm{Ba}_{11} \mathrm{Cd}_{8} \mathrm{Bi}_{14}$ (Xia \& Bobev, 2006a), $\mathrm{Eu}_{10} \mathrm{Cd}_{8} \mathrm{Bi}_{12}$ (Xia \& Bobev, 2007), $\mathrm{Sr}_{21} \mathrm{Cd}_{4} \mathrm{Bi}_{18}$ (Xia \& Bobev, 2008), among others. During these exploratory investigations, a new phase was serendipitously discovered. Upon subsequent structural work by means of single-crystal X-ray diffraction, it turned out to be the quaternary bismuthide(-I,-III) oxide $\mathrm{Ba}_{2} \mathrm{Cd}_{2.13} \mathrm{Bi}_{3} \mathrm{O}$. It crystallizes in space group $\mathrm{I} / \mathrm{mmm}$ in what appears to be a structure with a previously unreported structure type.

The crystal structure of the title compound is shown schematically in Figure 1. In this representation, the layered nature of the structure and the basic building blocks are emphasized. As seen from the plot, it can be readily described as consisting of PbO -type layers of fused $\left[\mathrm{CdBi}_{4}\right]$ tetrahedra, running parallel to the $a b$ plane and which are alternately stacked along the c axis with BaO slabs and Bi square-nets (Figure 1). The actual structure is more complicated due to the partially occupied Cd 2 site. The Cd 2 atoms cap the Bi square-nets from above and below and link these fragments to the CdBi slabs. Figure 2 shows a representation with anisotropic displacement ellipsoids.

The observed $\mathrm{Cd}-\mathrm{Bi}$ (from 2.9688 (14) to 3.0565 (14) \AA) and $\mathrm{Bi}-\mathrm{Bi}$ distances (3.3514 (3) \AA) are comparable to those reported for other cadmium-bismuthides such as BaCdBi_{2} (Brechtel et al., 1981), $\mathrm{Ba}_{11} \mathrm{Cd}_{8} \mathrm{Bi}_{14}$ (Xia \& Bobev, 2006a), $\mathrm{Eu}_{10} \mathrm{Cd}_{8} \mathrm{Bi}_{12}$ (Xia \& Bobev, 2007), $\mathrm{Sr}_{21} \mathrm{Cd}_{4} \mathrm{Bi}_{18}$ (Xia \& Bobev, 2008), $\mathrm{Ba}_{2} \mathrm{Cd}_{3} \mathrm{Bi}_{4}$ (Cordier et al., 1982; Xia \& Bobev, 2006b). The $\mathrm{Cd}-\mathrm{Bi}$ distances involving the Cd 2 atoms are shorter, but due to the very low occupancy of the Cd site (close to $1 / 8$ occupied), the physical significance of such contacts is hard to be rationalized. The Ba-O contacts (2.6736 (14) \AA) match well the recently reported $\mathrm{Ba}-\mathrm{O}$ distances for $\mathrm{Ba}_{5} \mathrm{Cd}_{2} \mathrm{Sb}_{5} \mathrm{O}_{x}(0.5<x<0.7)$ (Saparov \& Bobev, 2010).

Being a new structure type, it is important to relate the structure of the title compound to the structure(s) of previously reported phases with known structure types (Villars \& Calvert, 1991). A good starting point for a discussion is BaCdBi_{2} (Brechtel et al., 1981), reported with the ZrAl_{3} type (Villars \& Calvert, 1991). Coincidentally, BaCdBi_{2} also crystallizes in space group $I 4 / \mathrm{mmm}$ and with cell parameters $a=4.77 \AA$ and $c=23.6 \AA$. This structure features the very same PbO -type CdBi layers, stacked along the c-axis in alternating order with Bi square-nets. Not considering the partially occupied Cd2 site (for simplicity), one can then immediately reason that replacing every other BaBi slab in BaCdBi_{2} with a BaO slab will yield a hypothetical $\mathrm{Ba}_{2} \mathrm{Cd}_{2} \mathrm{Bi}_{3} \mathrm{O}$ compound. The latter can be considered as a super-structure of BaCdBi_{2} with doubled periodicity along the stacking detection, i.e., the c axis. Another way to relate the structure under consideration to other structure types is to consider the Cd 2 site fully occupied and rationalize the structure of such an ordered $\mathrm{Ba}_{2} \mathrm{Cd}_{3} \mathrm{Bi}_{3} \mathrm{O}$ compound as an intergrowth of two types of slabs -BaCdBiO with the ZrCuSiAs type and $\mathrm{BaCd}_{2} \mathrm{Bi}_{2}$ with the $\mathrm{CeMg}_{2} \mathrm{Si}_{2}$ type, respectively. This line of thinking is schematically illustrated in Figure 1.

supplementary materials

Experimental

Handling of the reagents was done in an argon-filled glove box or under vacuum. All metals were with a stated purity higher than 99.9% (metal basis). They were purchased from Alfa, kept in a glove box, and were used as received.

The flux reaction was carried out in a $2 \mathrm{~cm}^{3}$ alumina crucible, using a mixture of elemental Ba and Cd in a molar ratio 3:2 and ca 2.1 grams of Bi . The reaction was aimed at growing crystals of $\mathrm{Ba}_{3} \mathrm{Cd}_{2} \mathrm{Bi}_{4}$, a hitherto unknown phase with the $\mathrm{Ba}_{3} \mathrm{Cd}_{2} \mathrm{Sb}_{4}$ structure (Saparov et al., 2008), using excess of bismuth as a metal flux. The crucible was subsequently enclosed and flame-sealed in an evacuated fused silica ampoule, and then was heated at $200 \mathrm{Kh}^{-1}$ to 973 K , homogenized at 973 K for 20 h , cooled at a rate of $-5 \mathrm{Kh}^{-1}$ to 723 K , where the excess Bi was removed by decanting it, leaving behind some irregularly shaped silver pieces and a few dark-to-black plates. The former were confirmed (via single-crystal and powder X-ray diffraction) to be $\mathrm{Ba}_{2} \mathrm{Cd}_{3} \mathrm{Bi}_{4}$ ($\mathrm{Xia} \&$ Bobev, 2006b) and the latter turned out to be the title compound.

After the structure of the new compound was solved from single-crystal X-ray diffraction data, it was realized that an unadventurous exposure of the starting materials to air has led to the formation of $\mathrm{Ba}_{2} \mathrm{Cd}_{2.13} \mathrm{Bi}_{3} \mathrm{O}$ (minor product), alongside the intermetallic phase (major product). Subsequent attempts to produce $\mathrm{Ba}_{2} \mathrm{Cd}_{2.13} \mathrm{Bi}_{3} \mathrm{O}$ in quantitative yields from reactions of $\mathrm{Ba}, \mathrm{Cd}, \mathrm{Bi}$ and BaO_{2} (Acros, 95%) were not successful, suggesting it might be a metastable phase.

Refinement

The observed reflections satisfied the systematic extinction conditions for a body-centered cell, and the centrosymmetric space group $14 / \mathrm{mmm}$ (No. 139) was chosen based on intensity statistics. The structure was successfully solved by direct methods, which located six atomic positions - the two alkaline-earth metals, the three Bi atoms and one Cd atom. Subsequent structure refinements by full matrix least-squares methods on F^{2} showed the location of the oxygen atom in a tetrahedral void of Ba atoms with $\mathrm{Ba}-\mathrm{O}$ distances of 2.6736 (14) \AA. The difference Fourier map, however, also showed a residual peak of about $15 \mathrm{e}^{-} \AA^{-3}$, located ca. $2.7 \AA$ away from Bi . At first, we attempted to refine this as oxygen, however, there were serious problems with this model: 1) the electron density was much higher than a fully occupied $\mathrm{O}^{2-} ; 2$) such coordination is inconsistent with the bonding requirements of oxygen; 3) the electron count was clearly implausible, viz. $\left(\mathrm{Ba}^{2+}\right)_{2}\left(\mathrm{Cd}^{2+}\right)_{2}\left(\mathrm{Bi}^{3-}\right.$ $)_{2}\left(\mathrm{Bi}^{1-}\right)\left(\mathrm{O}^{2-}\right)_{2}$. Here, the polyanionic networks features bismuth in two different coordination modes, which require different formal charges. The Bi atoms in the square-net are hypervalent, thus formally Bi^{1-}, as analyzed computationally elsewhere (Papoian \& Hoffmann, 2000). Therefore, this additional site was modeled as a partially occupied Cd atom (Cd2). The formal electron count taking into account the ca. $1 / 8$ occupied Cd 2 site is then $\left(\mathrm{Ba}^{2+}\right)_{2}\left(\mathrm{Cd}^{2+}\right)_{2.13}\left(\mathrm{Bi}^{3-}\right)_{2}\left(\mathrm{Bi}^{1-}\right)\left(\mathrm{O}^{2-}\right)$, rendering this model much more reasonable (despite the shortcoming of the shorter Cd2-Bi distances, vide supra)

The occupancy of Cd 2 was fixed at 12.5%. After including the partially occupied Cd 2 site, the refinement converged at low residuals, accompanied with a flat final difference Fourier map - the maximum residual electron density lies $0.74 \AA$ from Bi 1 , and the minimum residual electron density lies $2.33 \AA$ from O.

In the final refinement cycles, all atoms were refined with anisotropic displacement parameters and with coordinates standardized using the software STRUCTURE-TIDY (Gelato \& Parthe, 1987).

Figures

Fig. 1. Combined ball-and-stick and polyhedral representation of the crystal structure of the tetragonal $\mathrm{Ba}_{2} \mathrm{Cd}_{2.13} \mathrm{Bi}_{3} \mathrm{O}$, viewed approximately along [010]. The unit cell is outlined. Color code: Ba - light yellow, Cd - green, Bi - blue, and O - red.

Fig. 2. A plot of the $\mathrm{Ba}_{2} \mathrm{Cd}_{2.13} \mathrm{Bi}_{3} \mathrm{O}$ structure with displacement ellipsoids drawn at the 95% probability level. Color code: Ba - light yellow, Cd - green, Bi - blue, and O - red. Cd 2 , which is partially occupied, is connected to the neighboring Bi atoms with broken cylinders. The long $\mathrm{Bi} 3-\mathrm{Bi} 3$ bonds within the square nest are depicted as open cylinders, while the mostly ionic $\mathrm{Ba}-\mathrm{O}$ interactions are represented with thin lines. The unit cell is outlined.

Dibarium tricadmium bismuthide(-I,-III) oxide

Crystal data

$\mathrm{Ba}_{2} \mathrm{Cd}_{2.13} \mathrm{Bi}_{3} \mathrm{O}$
$M_{r}=1148.47$

$$
D_{\mathrm{x}}=7.788 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$

supplementary materials

Tetragonal, $14 / \mathrm{mmm}$
Hall symbol: -I 42
$a=4.7396$ (4) \AA
$c=43.601(7) \AA$
$V=979.5(2) \AA^{3}$
$Z=4$
$F(000)=1890$

Cell parameters from 938 reflections
$\theta=4.7-26.7^{\circ}$
$\mu=66.05 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Plate, black
$0.05 \times 0.05 \times 0.02 \mathrm{~mm}$

Data collection

Bruker SMART APEX

diffractometer
Radiation source: fine-focus sealed tube
graphite
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.137, T_{\text {max }}=0.352$
5274 measured reflections

433 independent reflections
386 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.066$
$\theta_{\text {max }}=28.2^{\circ}, \theta_{\text {min }}=0.9^{\circ}$
$h=-6 \rightarrow 6$
$k=-6 \rightarrow 6$
$l=-56 \rightarrow 56$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.073$
$S=1.22$
433 reflections
25 parameters

0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0055 P)^{2}+124.164 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=4.75 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.93 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Experimental. Selected in the glove box, crystals were put in a Paratone N oil and cut to the desired dimensions. The chosen crystal was mounted on a tip of a glass fiber and quickly transferred onto the goniometer. The crystal was kept under a cold nitrogen stream to protect from the ambient air and moisture.

Data collection is performed with four batch runs at $\varphi=0.00^{\circ}$ (607 frames), at $\varphi=90.00^{\circ}(607$ frames $)$, at $\varphi=180.00^{\circ}(607$ frames), and at $\varphi=270.00$ (607 frames). Frame width $=0.30^{\circ}$ in ω. Data are merged and treated with multi-scan absorption corrections.

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R -

sup-4

factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Ba 1	0.0000	0.0000	$0.22161(7)$	$0.0529(9)$	
Ba 2	0.0000	0.0000	$0.43606(5)$	$0.0129(4)$	
Cd 1	0.0000	0.5000	$0.13679(4)$	$0.0181(4)$	
Cd 2	0.0000	0.0000	$0.0330(6)$	$0.020(4)$	0.13
Bi 1	0.0000	0.0000	$0.09251(3)$	$0.0165(3)$	
Bi 2	0.0000	0.0000	$0.32220(3)$	$0.0145(3)$	
Bi 3	0.0000	0.5000	0.0000	$0.0237(4)$	
O	0.0000	0.5000	0.2500	$0.037(7)$	

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba1	$0.0665(15)$	$0.0665(15)$	$0.0257(14)$	0.000	0.000	0.000
Ba2	$0.0120(6)$	$0.0120(6)$	$0.0148(10)$	0.000	0.000	0.000
Cd1	$0.0133(9)$	$0.0217(10)$	$0.0193(9)$	0.000	0.000	0.000
Cd2	$0.014(6)$	$0.014(6)$	$0.032(12)$	0.000	0.000	0.000
Bi1	$0.0109(4)$	$0.0109(4)$	$0.0278(7)$	0.000	0.000	0.000
Bi2	$0.0137(4)$	$0.0137(4)$	$0.0161(6)$	0.000	0.000	0.000
Bi3	$0.0123(7)$	$0.0415(9)$	$0.0173(7)$	0.000	0.000	0.000
O	$0.029(10)$	$0.029(10)$	$0.052(19)$	0.000	0.000	0.000

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Ba} 1-\mathrm{O}^{\text {i }}$	2.6736 (14)
Ba1-O	2.6736 (14)
$\mathrm{Ba}-\mathrm{O}^{\text {ii }}$	2.6736 (14)
Bal-0 ${ }^{\text {iii }}$	2.6736 (14)
$\mathrm{Ba} 1-\mathrm{Bi} 22^{\text {iv }}$	3.8575 (16)
$\mathrm{Ba} 1-\mathrm{Bi}_{2}{ }^{\text {i }}$	3.8575 (16)
$\mathrm{Ba} 1-\mathrm{Bi} 2{ }^{\text {ii }}$	3.8575 (16)
$\mathrm{Ba} 1-\mathrm{Bi}^{2}$	3.8575 (16)
$\mathrm{Ba} 2-\mathrm{Bi} 1^{\text {iv }}$	3.5756 (9)
$\mathrm{Ba} 2-\mathrm{Bi}^{\text {i }}$	3.5756 (9)
$\mathrm{Ba} 2-\mathrm{Bi} 1^{\text {ii }}$	3.5756 (9)
$\mathrm{Ba} 2-\mathrm{Bi1}^{\text {v }}$	3.5756 (9)
$\mathrm{Ba} 2-\mathrm{Cd} 2{ }^{\text {i }}$	3.613 (9)
$\mathrm{Ba} 2-\mathrm{Cd} 2{ }^{\text {iv }}$	3.613 (9)
$\mathrm{Ba} 2-\mathrm{Cd} 2{ }^{\text {ii }}$	3.613 (9)
$\mathrm{Ba} 2-\mathrm{Cd} 2{ }^{\text {v }}$	3.613 (9)

$\mathrm{Cd} 2-\mathrm{Cd} 2{ }^{\mathrm{xv}}$	2.87 (5)
$\mathrm{Cd} 2-\mathrm{Ba} 2{ }^{\text {i }}$	3.613 (9)
$\mathrm{Cd} 2-\mathrm{Ba} 2{ }^{\text {iv }}$	3.613 (9)
$\mathrm{Cd} 2-\mathrm{Ba} 2{ }^{\text {v }}$	3.613 (9)
$\mathrm{Cd} 2-\mathrm{Ba} 2{ }^{\text {ii }}$	3.613 (9)
Bil-Cd1 ${ }^{\text {xiii }}$	3.0565 (14)
Bil-Cd1 ${ }^{\text {xi }}$	3.0565 (14)
Bi1-Cd1 ${ }^{\text {iii }}$	3.0565 (14)
$\mathrm{Bi} 1-\mathrm{Ba} 2{ }^{\text {iv }}$	3.5756 (9)
$\mathrm{Bi} 1-\mathrm{Ba} 2^{\text {i }}$	3.5756 (9)
$\mathrm{Bi} 1-\mathrm{Ba} 2{ }^{\text {ii }}$	3.5756 (9)
$\mathrm{Bi} 1-\mathrm{Ba} 2^{\text {v }}$	3.5756 (9)
$\mathrm{Bi} 2-\mathrm{Cd1}{ }^{\text {xvi }}$	2.9688 (14)
$\mathrm{Bi} 2-\mathrm{Cd1}{ }^{\text {i }}$	2.9688 (14)
$\mathrm{Bi} 2-\mathrm{Cd1}{ }^{\text {xvii }}$	2.9688 (14)
$\mathrm{Bi} 2-\mathrm{Cd} 1{ }^{\text {ii }}$	2.9688 (14)

$\mathrm{Ba} 2-\mathrm{Bi} 3{ }^{\text {vi }}$	3.6588 (16)
$\mathrm{Ba} 2-\mathrm{Bi} 3{ }^{\text {vii }}$	3.6588 (16)
Ba2-Bi3 ${ }^{\text {viii }}$	3.6588 (16)
$\mathrm{Ba} 2-\mathrm{Bi} 3{ }^{\text {ix }}$	3.6588 (16)
Cd1- $\mathrm{Bi}_{2}{ }^{\text {i }}$	2.9689 (14)
$\mathrm{Cd} 1-\mathrm{Bi} 2{ }^{\text {ii }}$	2.9689 (14)
Cd1—Bil	3.0565 (14)
Cd1- $\mathrm{Bil}^{\text {x }}$	3.0565 (14)
Cd1-Cd1 ${ }^{\text {xi }}$	3.3514 (3)
Cd1-Cd1 ${ }^{\text {xii }}$	3.3514 (3)
Cd1-Cd1 ${ }^{\text {xiii }}$	3.3514 (3)
Cd1-Cd1 ${ }^{\text {xiv }}$	3.3514 (3)
$\mathrm{Cd} 1-\mathrm{Ba} 2{ }^{\text {ii }}$	3.963 (2)
$\mathrm{Cd} 1-\mathrm{Ba} 2{ }^{\text {i }}$	3.963 (2)
Cd2-Bi1	2.60 (2)
$\mathrm{Cd} 2-\mathrm{Bi}^{\text {xi }}$	2.771 (13)
Cd2-Bi3 ${ }^{\text {iii }}$	2.771 (13)
$\mathrm{Cd} 2-\mathrm{Bi}^{3 \mathrm{xiii}}$	2.771 (13)
Cd2-Bi3	2.771 (13)
$\mathrm{O}^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O}$	77.62 (5)
$\mathrm{O}^{\mathrm{i}}-\mathrm{Ba}-\mathrm{O}^{\text {ii }}$	124.84 (12)
$\mathrm{O}-\mathrm{Ba}-\mathrm{O}^{\text {ii }}$	77.62 (5)
$\mathrm{O}^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{O}^{\text {iii }}$	77.62 (5)
$\mathrm{O}-\mathrm{Ba} 1-\mathrm{O}^{\text {iii }}$	124.84 (12)
$\mathrm{O}^{\text {ii }}-\mathrm{Ba} 1-\mathrm{O}^{\text {iii }}$	77.62 (5)
$\mathrm{O}-\mathrm{Ba} 1-\mathrm{Bi}^{\text {i }}{ }^{\text {iv }}$	140.694 (10)
$\mathrm{O}-\mathrm{Ba} 1-\mathrm{Bi}^{2}{ }^{\text {iv }}$	140.694 (10)
$\mathrm{O}^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{Bi}^{2 \mathrm{iv}}$	71.62 (2)
$\mathrm{O}^{\text {iiii }}-\mathrm{Ba} 1-\mathrm{Bi}^{\text {iv }}$	71.62 (2)
$\mathrm{O}-\mathrm{Ba} 1-\mathrm{Bi}^{2}{ }^{\mathrm{i}}$	71.62 (2)
$\mathrm{O}-\mathrm{Ba} 1-\mathrm{Bi} 2{ }^{\mathrm{i}}$	71.62 (2)
$\mathrm{O}^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{Bi}^{\text {i }}{ }^{\text {i }}$	140.694 (10)
$\mathrm{O}^{\text {iii }}-\mathrm{Ba} 1-\mathrm{Bi}^{2}{ }^{\text {i }}$	140.694 (10)
$\mathrm{Bi} 22^{\text {iv }}-\mathrm{Ba} 1-\mathrm{Bi}^{2}{ }^{\mathrm{i}}$	120.64 (8)
$\mathrm{O}^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{Bi}^{2 i}{ }^{\text {ii }}$	140.694 (9)
$\mathrm{O}-\mathrm{Ba} 1-\mathrm{Bi}_{2}{ }^{\text {ii }}$	71.62 (2)
$\mathrm{O}^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{Bi}^{\text {ii }}$	71.62 (2)
$\mathrm{O}^{\text {iii }}-\mathrm{Ba} 1-\mathrm{Bi}^{\text {ii }}$	140.694 (9)
$\mathrm{Bi} 22^{\text {iv }}-\mathrm{Ba} 1-\mathrm{Bi}^{2 i}$	75.81 (4)
$\mathrm{Bi} 2{ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{Bi}^{\text {ii }}$	75.81 (4)
$\mathrm{O}-\mathrm{Ba} 1-\mathrm{Bi}^{\text {i }}$	71.62 (2)

$B i 2-\mathrm{Ba}^{\text {iv }}$	3.8575 (16)
$\mathrm{Bi} 2-\mathrm{Ba} 1^{\text {i }}$	3.8575 (16)
$\mathrm{Bi} 2-\mathrm{Ba} 1^{\text {v }}$	3.8575 (16)
$\mathrm{Bi} 2-\mathrm{Ba} 1^{\text {ii }}$	3.8575 (16)
$\mathrm{Bi} 3-\mathrm{Cd} 2{ }^{\mathrm{xv}}$	2.771 (13)
$\mathrm{Bi} 3-\mathrm{Cd} 2{ }^{\text {x }}$	2.771 (13)
$\mathrm{Bi} 3-\mathrm{Cd} 2{ }^{\text {xviii }}$	2.771 (13)
Bi3-Bi3 ${ }^{\text {xii }}$	3.3514 (3)
Bi3-Bi3 ${ }^{\text {xi }}$	3.3514 (3)
Bi3-Bi3 ${ }^{\text {xiv }}$	3.3514 (3)
Bi3-Bi3 ${ }^{\text {xiii }}$	3.3514 (3)
$\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {i }}$	3.6588 (16)
Bi3-Ba ${ }^{\text {xix }}$	3.6588 (16)
$\mathrm{Bi} 3-\mathrm{Ba} 2^{\mathrm{xx}}$	3.6588 (16)
$\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {ii }}$	3.6588 (16)
O-Ba $1^{\text {i }}$	2.6736 (14)
O-Ba1 ${ }^{\text {x }}$	2.6736 (14)
$\mathrm{O}-\mathrm{Ba} 1^{\text {ii }}$	2.6736 (14)

$\mathrm{Bi}^{3 \mathrm{xi}}-\mathrm{Cd} 2-\mathrm{Bi} 3{ }^{\text {iii }}$	74.4 (4)
Bi1-Cd2-Bi3 ${ }^{\text {xiii }}$	121.2 (4)
$\mathrm{Bi}^{\text {xi }}-\mathrm{Cd} 2-\mathrm{Bi}^{\text {xiii }}$	117.5 (9)
$\mathrm{Bi} 3{ }^{\text {iii }}-\mathrm{Cd} 2-\mathrm{Bi}^{\text {xiii }}$	74.4 (4)
Bi1-Cd2-Bi3	121.2 (4)
$\mathrm{Bi} 3{ }^{\text {xi }}-\mathrm{Cd} 2-\mathrm{Bi} 3$	74.4 (4)
$\mathrm{Bi} 3{ }^{\text {iii }}-\mathrm{Cd} 2-\mathrm{Bi} 3$	117.5 (9)
$\mathrm{Bi} 3{ }^{\text {xiii }}-\mathrm{Cd} 2-\mathrm{Bi} 3$	74.4 (4)

$\mathrm{Bi} 1-\mathrm{Cd} 2-\mathrm{Cd}^{\mathrm{xv}} \quad 180.0$
$\mathrm{Bi}^{\mathrm{xi}}-\mathrm{Cd} 2-\mathrm{Cd}^{2 \mathrm{xv}} \quad 58.8$ (4)
$\mathrm{Bi}^{\mathrm{iiii}}-\mathrm{Cd} 2-\mathrm{Cd}^{\mathrm{xv}} \quad 58.8$ (4)
$\mathrm{Bi}^{\text {xiii }}-\mathrm{Cd} 2-\mathrm{Cd} 2^{\mathrm{xv}} \quad 58.8$ (4)
$\mathrm{Bi} 3-\mathrm{Cd} 2-\mathrm{Cd}^{2 \mathrm{xv}} \quad 58.8$ (4)
$\mathrm{Bi} 1-\mathrm{Cd} 2-\mathrm{Ba} 2^{\mathrm{i}} \quad 68.0$ (4)
$\mathrm{Bi} 3^{\mathrm{xi}}-\mathrm{Cd} 2 — \mathrm{Ba} 2^{\mathrm{i}} \quad 138.99$ (16)
$\mathrm{Bi} 3{ }^{\text {iiii }}-\mathrm{Cd} 2 — \mathrm{Ba} 2^{\mathrm{i}} \quad 138.99$ (16)
$\mathrm{Bi}^{\text {xiii }}-\mathrm{Cd} 2-\mathrm{Ba}^{\mathrm{i}} \quad 68.47$ (4)
$\mathrm{Bi} 3-\mathrm{Cd} 2-\mathrm{Ba} 2^{\mathrm{i}} \quad 68.47$ (4)
$\mathrm{Cd} 2^{\mathrm{xv}}-\mathrm{Cd} 2-\mathrm{Ba} 2^{\mathrm{i}} \quad 112.0$ (4)
$\mathrm{Bi}-\mathrm{Cd} 2-\mathrm{Ba}_{2}{ }^{\text {iv }} \quad 68.0$ (4)
$\mathrm{Bi}^{2 \mathrm{xi}}-\mathrm{Cd} 2-\mathrm{Ba} 2^{\mathrm{iv}} \quad 68.47$ (4)
$\mathrm{Bi} 3{ }^{\text {iii }}-\mathrm{Cd} 2 — \mathrm{Ba} 2^{\text {iv }} \quad 68.47$ (4)

sup-6

$\mathrm{O}-\mathrm{Ba} 1-\mathrm{Bi}^{2}$	140.694 (9)
Oii ${ }^{\text {ii }} \mathrm{Ba} 1-\mathrm{Bi}^{\text {v }}$	140.694 (9)
$\mathrm{O}^{\text {iii }}-\mathrm{Ba} 1-\mathrm{Bi}^{\text {v }}$	71.62 (2)
$\mathrm{Bi} 22^{\text {iv }}-\mathrm{Ba} 1-\mathrm{Bi}^{2}$	75.81 (4)
$\mathrm{Bi}^{2}{ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{Bi}^{2}{ }^{\mathrm{v}}$	75.81 (4)
$\mathrm{Bi} 2{ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{Bi}^{2}$	120.64 (8)
$\mathrm{O}^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\mathrm{i}}$	38.81 (2)
$\mathrm{O}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {i }}$	38.81 (2)
$\mathrm{O}^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\mathrm{i}}$	103.24 (10)
$\mathrm{O}^{\text {iii }}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {i }}$	103.24 (10)
$\mathrm{Bi} 22^{\text {iv }}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\mathrm{i}}$	173.23 (11)
$\mathrm{Bi} 2{ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\mathrm{i}}$	66.13 (4)
$\mathrm{Bi} 2{ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {i }}$	107.110 (13)
$\mathrm{Bi} 2{ }^{\mathrm{v}}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\mathrm{i}}$	107.110 (13)
$\mathrm{O}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\mathrm{V}}$	38.81 (2)
$\mathrm{O}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {v }}$	103.24 (10)
$\mathrm{O}^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\mathrm{v}}$	103.24 (10)
$\mathrm{O}^{\text {iii }}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {v }}$	38.81 (2)
$\mathrm{Bi} 2{ }^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\mathrm{v}}$	107.110 (12)
$\mathrm{Bi} 2{ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{Ba} 1{ }^{\mathrm{v}}$	107.110 (13)
$\mathrm{Bi} 22^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\mathrm{v}}$	173.23 (11)
Bi^{2} v- $\mathrm{Ba} 1-\mathrm{Ba} 1^{\mathrm{v}}$	66.13 (3)
$\mathrm{Ba} 1^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\mathrm{v}}$	69.33 (7)
$\mathrm{O}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {ii }}$	103.24 (10)
$\mathrm{O}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {ii }}$	38.81 (2)
$\mathrm{O}^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\mathrm{ii}}$	38.81 (2)
$\mathrm{O}^{\text {iii }}$ - $\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {ii }}$	103.24 (10)
$\mathrm{Bi} 2^{\mathrm{iv}}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {ii }}$	107.110 (12)
$\mathrm{Bi} 2{ }^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\mathrm{ii}}$	107.110 (13)
$\mathrm{Bi} 2{ }^{\text {ii }}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {ii }}$	66.13 (3)
Bi^{2} - $-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {ii }}$	173.23 (11)
$\mathrm{Ba} 1^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {ii }}$	69.33 (7)
$\mathrm{Ba} 1^{\mathrm{v}}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\mathrm{ii}}$	107.10 (14)
$\mathrm{O}^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {iv }}$	103.24 (10)
$\mathrm{O}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {iv }}$	103.24 (10)
$\mathrm{O}^{\text {iii }}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {iv }}$	38.81 (2)
$\mathrm{O}^{\text {iii }}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {iv }}$	38.81 (2)
$\mathrm{Bi} 2{ }^{\text {iv }}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {iv }}$	66.13 (3)
$\mathrm{Bi} 22^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {iv }}$	173.23 (11)
$\mathrm{Bi} 2{ }^{\mathrm{ii}}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\mathrm{iv}}$	107.110 (12)
Bi^{2} - $\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {iv }}$	107.110 (12)

$\mathrm{Bi}^{\text {xiii }}-\mathrm{Cd} 2-\mathrm{Ba} 2{ }^{\text {iv }}$	138.99 (16)
$\mathrm{Bi} 3-\mathrm{Cd} 2-\mathrm{Ba} 2^{\mathrm{iv}}$	138.99 (16)
$\mathrm{Cd} 2{ }^{\mathrm{xv}}-\mathrm{Cd} 2-\mathrm{Ba} 2{ }^{\text {iv }}$	112.0 (4)
$\mathrm{Ba} 2{ }^{\mathrm{i}}-\mathrm{Cd} 2-\mathrm{Ba} 2{ }^{\text {iv }}$	136.1 (7)
$\mathrm{Bi} 1-\mathrm{Cd} 2-\mathrm{Ba}^{2}$	68.0 (4)
$\mathrm{Bi}^{3 \mathrm{xi}}-\mathrm{Cd} 2-\mathrm{Ba} 2{ }^{\text {v }}$	138.99 (16)
$\mathrm{Bi}^{3}{ }^{\text {iii }}-\mathrm{Cd} 2-\mathrm{Ba} 2{ }^{\text {v }}$	68.47 (4)
$\mathrm{Bi}^{\text {xiii }}-\mathrm{Cd} 2-\mathrm{Ba}^{\text {v }}$	68.47 (4)
$\mathrm{Bi} 3-\mathrm{Cd} 2-\mathrm{Ba} 2{ }^{\mathrm{v}}$	138.99 (16)
$\mathrm{Cd} 2{ }^{\mathrm{xv}}-\mathrm{Cd} 2-\mathrm{Ba} 2{ }^{\mathrm{v}}$	112.0 (4)
$\mathrm{Ba} 2{ }^{\mathrm{i}}-\mathrm{Cd} 2-\mathrm{Ba} 2{ }^{\text {v }}$	82.0 (3)
$\mathrm{Ba} 2{ }^{\text {iv }}-\mathrm{Cd} 2-\mathrm{Ba} 2{ }^{\text {v }}$	82.0 (3)
Bi1-Cd2-Ba $2^{\text {ii }}$	68.0 (4)
$\mathrm{Bi}^{3}{ }^{\mathrm{xi}}-\mathrm{Cd} 2-\mathrm{Ba} 2{ }^{\text {ii }}$	68.47 (4)
$\mathrm{Bi}_{3}{ }^{\text {iii }}-\mathrm{Cd} 2-\mathrm{Ba} 2{ }^{\text {ii }}$	138.99 (16)
$\mathrm{Bi}^{\text {xiii }}-\mathrm{Cd} 2-\mathrm{Ba} 2{ }^{\text {ii }}$	138.99 (16)
$\mathrm{Bi} 3-\mathrm{Cd} 2-\mathrm{Ba} 2{ }^{\text {ii }}$	68.47 (4)
$\mathrm{Cd} 2{ }^{\mathrm{xv}}-\mathrm{Cd} 2-\mathrm{Ba} 2{ }^{\text {ii }}$	112.0 (4)
$\mathrm{Ba} 2{ }^{\mathrm{i}}-\mathrm{Cd} 2-\mathrm{Ba} 2{ }^{\text {ii }}$	82.0 (3)
$\mathrm{Ba} 2{ }^{\text {iv }}-\mathrm{Cd} 2-\mathrm{Ba} 2{ }^{\text {ii }}$	82.0 (3)
$\mathrm{Ba} 2{ }^{\mathrm{v}}-\mathrm{Cd} 2-\mathrm{Ba} 2{ }^{\text {ii }}$	136.1 (7)
Cd2-Bil-Cd1	129.16 (3)
Cd2-Bil-Cd1 ${ }^{\text {xiii }}$	129.17 (3)
Cd1-Bi1-Cd1 ${ }^{\text {xiii }}$	66.49 (4)
$\mathrm{Cd} 2-\mathrm{Bil}-\mathrm{Cd1}{ }^{\text {xi }}$	129.17 (3)
Cd1-Bi1-Cd1 ${ }^{\text {xi }}$	66.49 (4)
$\mathrm{Cd1}{ }^{\text {xiii }}-\mathrm{Bi1}-\mathrm{Cd1}^{\text {xi }}$	101.67 (7)
Cd2-Bi1-Cd1 ${ }^{\text {iii }}$	129.17 (3)
Cd1-Bil-Cd1 ${ }^{\text {iii }}$	101.67 (7)
$\mathrm{Cd} 1{ }^{\text {xiii }}-\mathrm{Bi} 1-\mathrm{Cd} 11^{\text {iii }}$	66.49 (4)
Cd1 ${ }^{\text {xi }}$ - $\mathrm{Bi} 1-\mathrm{Cd} 1{ }^{\text {iii }}$	66.49 (4)
$\mathrm{Cd} 2-\mathrm{Bi} 1-\mathrm{Ba} 2{ }^{\text {iv }}$	69.60 (4)
Cd1-Bi1-Ba $2^{\text {iv }}$	137.22 (3)
$\mathrm{Cd} 1^{\text {xiii }}-\mathrm{Bi} 1-\mathrm{Ba} 2{ }^{\text {iv }}$	137.22 (3)
$\mathrm{Cd} 1{ }^{\text {xi}}-\mathrm{Bi} 1-\mathrm{Ba} 2{ }^{\text {iv }}$	72.92 (3)
$\mathrm{Cd} 1{ }^{\text {iii }}-\mathrm{Bi} 1-\mathrm{Ba}^{2}{ }^{\text {iv }}$	72.92 (3)
$\mathrm{Cd} 2-\mathrm{Bi} 1-\mathrm{Ba} 2{ }^{\text {i }}$	69.60 (4)
Cd1-Bi1-Ba2 ${ }^{\text {i }}$	72.92 (3)
$\mathrm{Cd} 1^{\text {xiii }}-\mathrm{Bi} 1-\mathrm{Ba} 2^{\text {i }}$	72.92 (3)
$\mathrm{Cd} 1{ }^{\mathrm{xi}}-\mathrm{Bi} 1-\mathrm{Ba} 2{ }^{\text {i }}$	137.22 (3)
$\mathrm{Cd} 1{ }^{\text {iii }}-\mathrm{Bi} 1-\mathrm{Ba} 2^{\text {i }}$	137.22 (3)

$\mathrm{Ba} 1^{\mathrm{i}}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {iv }}$	107.10 (14)
$\mathrm{Ba} 1^{\mathrm{v}}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {iv }}$	69.33 (7)
$\mathrm{Ba} 1^{\text {ii }}-\mathrm{Ba} 1-\mathrm{Ba} 1^{\text {iv }}$	69.33 (7)
$\mathrm{Bi} 1{ }^{\text {iv }}-\mathrm{Ba} 2-\mathrm{Bi}^{1}{ }^{\text {i }}$	139.21 (8)
$\mathrm{Bi} 1{ }^{\text {iv }}-\mathrm{Ba} 2-\mathrm{Bi} 1^{\text {ii }}$	83.02 (3)
Bi1 ${ }^{\text {i }}-\mathrm{Ba} 2-\mathrm{Bi} 1^{\mathrm{ii}}$	83.02 (3)
$\mathrm{Bi1}^{\text {iv }}-\mathrm{Ba} 2-\mathrm{Bi1}^{\text {v }}$	83.02 (3)
$\mathrm{Bi} 1^{\mathrm{i}}-\mathrm{Ba} 2-\mathrm{Bil}^{\text {v }}$	83.02 (3)
$\mathrm{Bi} 1^{\mathrm{ii}}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {V }}$	139.21 (8)
$\mathrm{Bi} 1{ }^{\text {iv }}-\mathrm{Ba} 2-\mathrm{Cd} 2{ }^{\text {i }}$	178.4 (4)
$\mathrm{Bi} 1^{\mathrm{i}}-\mathrm{Ba} 2-\mathrm{Cd} 2{ }^{\mathrm{i}}$	42.3 (4)
$\mathrm{Bi} 1{ }^{\text {ii }}-\mathrm{Ba} 2-\mathrm{Cd} 2{ }^{\text {i }}$	97.49 (12)
$\mathrm{Bi}^{2}-\mathrm{Ba} 2-\mathrm{Cd} 2{ }^{\text {i }}$	97.49 (12)
$\mathrm{Bi}_{1}{ }^{\text {iv }}-\mathrm{Ba} 2-\mathrm{Cd} 2^{\text {iv }}$	42.3 (4)
$\mathrm{Bi} 1{ }^{\mathrm{i}}-\mathrm{Ba} 2-\mathrm{Cd} 2{ }^{\text {iv }}$	178.4 (4)
$\mathrm{Bi} 1^{\mathrm{ii}}-\mathrm{Ba} 2-\mathrm{Cd} 2{ }^{\text {iv }}$	97.49 (12)
$\mathrm{Bi}^{2}{ }^{\text {v }}-\mathrm{Ba} 2-\mathrm{Cd} 2{ }^{\text {iv }}$	97.49 (12)
$\mathrm{Cd} 22^{\text {i }}-\mathrm{Ba} 2-\mathrm{Cd} 2{ }^{\text {iv }}$	136.1 (7)
$\mathrm{Bi}_{1}{ }^{\text {iv }}-\mathrm{Ba} 2-\mathrm{Cd} 22^{\mathrm{ii}}$	97.49 (12)
$\mathrm{Bi} 1{ }^{\text {i }}-\mathrm{Ba} 2-\mathrm{Cd2}{ }^{\text {ii }}$	97.49 (12)
$\mathrm{Bi} 1{ }^{\text {ii }}-\mathrm{Ba} 2-\mathrm{Cd} 22^{\text {ii }}$	42.3 (4)
$\mathrm{Bi}^{2}-\mathrm{Ba} 2-\mathrm{Cd} 2{ }^{\text {ii }}$	178.4 (4)
$\mathrm{Cd} 2{ }^{\text {i }}-\mathrm{Ba} 2-\mathrm{Cd} 2{ }^{\text {ii }}$	82.0 (3)
$\mathrm{Cd2}^{2 \mathrm{iv}}-\mathrm{Ba} 2-\mathrm{Cd} 2{ }^{\text {ii }}$	82.0 (3)
$\mathrm{Bi}_{1}{ }^{\text {iv }}-\mathrm{Ba} 2-\mathrm{Cd} 2{ }^{\mathrm{v}}$	97.49 (12)
$\mathrm{Bi} 1{ }^{\mathrm{i}}-\mathrm{Ba} 2-\mathrm{Cd} 2{ }^{\mathrm{v}}$	97.49 (12)
$\mathrm{Bi} 1{ }^{\text {ii }}-\mathrm{Ba} 2-\mathrm{Cd} 2{ }^{\mathrm{v}}$	178.4 (4)
$\mathrm{Bi} 1^{\mathrm{v}}-\mathrm{Ba} 2-\mathrm{Cd} 2{ }^{\text {v }}$	42.3 (4)
$\mathrm{Cd} 2{ }^{\mathrm{i}}-\mathrm{Ba} 2-\mathrm{Cd} 2{ }^{\text {v }}$	82.0 (3)
$\mathrm{Cd} 2{ }^{\text {iv }}-\mathrm{Ba} 2-\mathrm{Cd} 2{ }^{\text {v }}$	82.0 (3)
$\mathrm{Cd} 2{ }^{\text {ii }}-\mathrm{Ba} 2-\mathrm{Cd} 2{ }^{\mathrm{v}}$	136.1 (7)
$\mathrm{Bi} 1{ }^{\text {iv }}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {vi }}$	134.01 (4)
$\mathrm{Bi} 1{ }^{\text {i }}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {vi }}$	80.58 (2)
$\mathrm{Bi} 1{ }^{\text {ii }}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {vi }}$	80.58 (2)
$\mathrm{Bi} 1^{\mathrm{v}}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {vi }}$	134.01 (4)
$\mathrm{Cd} 2{ }^{\text {i }}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {vi }}$	44.8 (3)
$\mathrm{Cd} 2{ }^{\text {iv }}-\mathrm{Ba} 2-\mathrm{Bi}^{2 \mathrm{vi}}$	98.0 (3)
$\mathrm{Cd} 2{ }^{\text {ii }}-\mathrm{Ba} 2-\mathrm{Bi} 3{ }^{\text {vi }}$	44.8 (3)
$\mathrm{Cd} 2{ }^{\text {v }}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {vi }}$	98.0 (3)
$\mathrm{Bi}^{\text {iv }}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {vii }}$	134.01 (4)
Bi1 $1^{\text {i }}-\mathrm{Ba} 2-\mathrm{Bi} 3{ }^{\text {vii }}$	80.58 (2)

107.10 (14)
69.33 (7)
69.33 (7)
139.21 (8)
83.02 (3)
83.02 (3)
83.02 (3)
139.21 (8)
178.4 (4)
42.3 (4)
97.49 (12)
97.49 (12)
42.3 (4)
178.4 (4)
97.49 (12)
136.1 (7)
97.49 (12)
42.3 (4)
178.4 (4)
82.0 (3)
97.49 (12)
97.49 (12)
178.4 (4)
. 3
82.0 (3)
134.01 (4)
80.58 (2)
80.58 (2)
44.8 (3)
44.8 (3)
134.01 (4)
80.58 (2)

$\mathrm{Ba} 2{ }^{\mathrm{iv}}-\mathrm{Bi} 1-\mathrm{Ba} 2{ }^{\text {i }}$	139.21 (8)
Cd2-Bil-Ba $2^{\text {ii }}$	69.60 (4)
Cd1-Bi1-Ba2 ${ }^{\text {ii }}$	72.92 (3)
	137.22 (3)
$\mathrm{Cd} 1{ }^{\mathrm{xi}}-\mathrm{Bi} 1-\mathrm{Ba} 2{ }^{\text {ii }}$	72.92 (3)
$\mathrm{Cd} 1{ }^{\text {iii }}$ - $\mathrm{Bi} 1-\mathrm{Ba} 2^{\mathrm{ii}}$	137.22 (3)
$\mathrm{Ba} 2{ }^{\text {iv }}-\mathrm{Bi} 1-\mathrm{Ba} 2{ }^{\text {ii }}$	83.02 (3)
$\mathrm{Ba} 2{ }^{\mathrm{i}}-\mathrm{Bi} 1-\mathrm{Ba} 2{ }^{\text {ii }}$	83.02 (3)
	69.60 (4)
	137.22 (3)
$\mathrm{Cd} 1{ }^{\text {xiii }}-\mathrm{Bi} 1-\mathrm{Ba} 2{ }^{\mathrm{v}}$	72.92 (3)
$\mathrm{Cd} 1^{\mathrm{xi}}-\mathrm{Bi} 1-\mathrm{Ba} 2^{\mathrm{v}}$	137.22 (3)
$\mathrm{Cd} 1^{\mathrm{iii}}-\mathrm{Bi} 1-\mathrm{Ba}^{\text {v }}$	72.92 (3)
$\mathrm{Ba} 2{ }^{\text {iv }}-\mathrm{Bi} 1-\mathrm{Ba} 2{ }^{\text {v }}$	83.02 (3)
$\mathrm{Ba} 2{ }^{\mathrm{i}}-\mathrm{Bi} 1-\mathrm{Ba} 2{ }^{\mathrm{v}}$	83.02 (3)
$\mathrm{Ba} 2{ }^{\mathrm{ii}}-\mathrm{Bi} 1-\mathrm{Ba} 2{ }^{\mathrm{V}}$	139.21 (8)
$\mathrm{Cd} 1^{\mathrm{xvi}}-\mathrm{Bi} 2-\mathrm{Cd} 1^{\text {i }}$	68.73 (4)
$\mathrm{Cd} 1^{\mathrm{xvi}}-\mathrm{Bi} 2-\mathrm{Cd} 1^{\mathrm{xvii}}$	105.92 (7)
Cd1 ${ }^{\text {i }}$ - $\mathrm{Bi} 2-\mathrm{Cd} 1^{\text {xvii }}$	68.73 (4)
Cd1 $1^{\mathrm{xvi}}-\mathrm{Bi} 2-\mathrm{Cd1}{ }^{\text {ii }}$	68.73 (4)
Cd1 ${ }^{\text {i }}-\mathrm{Bi} 2-\mathrm{Cd} 1^{\text {ii }}$	105.92 (7)
Cd1 ${ }^{\text {xvii }}-\mathrm{Bi} 2-\mathrm{Cd1} 1^{\text {ii }}$	68.73 (4)
$\mathrm{Cd} 1{ }^{\text {xvi }}-\mathrm{Bi} 2-\mathrm{Ba} 1^{\text {iv }}$	142.059 (16)
$\mathrm{Cd} 1{ }^{\mathrm{i}}-\mathrm{Bi} 2-\mathrm{Ba} 1^{\text {iv }}$	142.059 (16)
$\mathrm{Cd} 1^{\text {xvii }}$ - $\mathrm{Bi} 2-\mathrm{Ba} 1^{\text {iv }}$	78.92 (4)
$\mathrm{Cd} 1{ }^{\text {ii }}-\mathrm{Bi} 2-\mathrm{Ba} 1^{\text {iv }}$	78.92 (4)
$\mathrm{Cd} 1^{\mathrm{xvi}}-\mathrm{Bi} 2-\mathrm{Ba} 1^{\text {i }}$	78.92 (4)
$\mathrm{Cd} 11^{\mathrm{i}}$ - $\mathrm{Bi} 2-\mathrm{Ba} 1^{\mathrm{i}}$	78.92 (4)
$\mathrm{Cd} 1{ }^{\text {xvii }}-\mathrm{Bi} 2-\mathrm{Ba} 1^{\text {i }}$	142.059 (17)
$\mathrm{Cd} 1^{\mathrm{ii}}-\mathrm{Bi} 2-\mathrm{Ba} 1^{\text {i }}$	142.059 (17)
$\mathrm{Ba} 1^{\mathrm{iv}}-\mathrm{Bi} 2-\mathrm{Ba} 1^{\text {i }}$	120.64 (8)
$\mathrm{Cd} 1{ }^{\mathrm{xvi}}-\mathrm{Bi} 2-\mathrm{Ba} 1^{\mathrm{v}}$	142.059 (17)
$\mathrm{Cd1}{ }^{\text {i }}$ - $\mathrm{Bi} 2-\mathrm{Ba} 1^{\mathrm{v}}$	78.92 (4)
$\mathrm{Cd1}{ }^{\text {xvii }}-\mathrm{Bi} 2-\mathrm{Ba} 1^{\mathrm{v}}$	78.92 (4)
$\mathrm{Cd} 1^{\mathrm{ii}}-\mathrm{Bi} 2-\mathrm{Ba} 1^{v}$	142.059 (17)
$\mathrm{Ba} 1^{\text {iv }}-\mathrm{Bi} 2-\mathrm{Ba} 1^{v}$	75.81 (4)
$\mathrm{Ba} 1^{\mathrm{i}}-\mathrm{Bi} 2-\mathrm{Ba} 1^{\mathrm{V}}$	75.81 (4)
$\mathrm{Cd} 1^{\mathrm{xvi}}-\mathrm{Bi} 2-\mathrm{Ba} 1^{\text {ii }}$	78.92 (4)
Cd1 ${ }^{\text {i }}$ - $\mathrm{Bi} 2-\mathrm{Ba} 1^{\text {ii }}$	142.059 (17)
$\mathrm{Cd1} 1^{\text {xvii }}-\mathrm{Bi} 2-\mathrm{Ba} 1^{\text {ii }}$	142.059 (16)
Cd $1^{\text {ii }}-\mathrm{Bi} 2-\mathrm{Ba} 1^{\text {ii }}$	78.92 (4)

sup-8

Bii ${ }^{\text {ii }}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {vii }}$	134.01 (4)
$\mathrm{Bi} 1^{\mathrm{v}}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {vii }}$	80.58 (2)
$\mathrm{Cd} 2{ }^{\mathrm{i}}-\mathrm{Ba} 2-\mathrm{Bi} 3{ }^{\text {vii }}$	44.8 (3)
$\mathrm{Cd} 2{ }^{\text {iv }}-\mathrm{Ba} 2-\mathrm{Bi} 3{ }^{\text {vii }}$	98.0 (3)
$\mathrm{Cd} 22^{\text {ii }}-\mathrm{Ba} 2-\mathrm{Bi} 3{ }^{\text {vii }}$	98.0 (3)
$\mathrm{Cd} 2{ }^{\text {v }}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {vii }}$	44.8 (3)
$\mathrm{Bi}^{\text {vi }}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {vii }}$	54.51 (3)
$\mathrm{Bi}^{\text {iv }}$ - $-\mathrm{Ba} 2-\mathrm{Bi} 3{ }^{\text {viii }}$	80.58 (2)
Bi1 ${ }^{\text {² }}$ - $\mathrm{Ba} 2-\mathrm{Bi}^{\text {viii }}$	134.01 (4)
$\mathrm{Bi} 1{ }^{\text {ii }}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {viii }}$	134.01 (4)
$\mathrm{Bil}^{2}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {viii }}$	80.58 (2)
$\mathrm{Cd} 2{ }^{\text {i }}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {viii }}$	98.0 (3)
$\mathrm{Cd} 2{ }^{\text {iv }}-\mathrm{Ba} 2-\mathrm{Bi} 3{ }^{\text {viii }}$	44.8 (3)
$\mathrm{Cd} 2{ }^{\text {iii }}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {viii }}$	98.0 (3)
$\mathrm{Cd} 2{ }^{\mathrm{v}}$ - $\mathrm{Ba} 2-\mathrm{Bi} 3^{\text {viii }}$	44.8 (3)
$\mathrm{Bi}^{\text {vi }}-\mathrm{Ba} 2-\mathrm{Bi} 3{ }^{\text {viii }}$	80.74 (4)
$\mathrm{Bi} 3{ }^{\text {vii }}-\mathrm{Ba} 2-\mathrm{Bi} 3{ }^{\text {viii }}$	54.51 (3)
$\mathrm{Bi}^{\text {iv }}$ - $-\mathrm{Ba} 2-\mathrm{Bi}^{3}{ }^{\text {ix }}$	80.58 (2)
$\mathrm{Bi} 1^{\mathrm{i}}-\mathrm{Ba} 2-\mathrm{Bi} 3{ }^{\text {ix }}$	134.01 (4)
$\mathrm{Bi} 1{ }^{\text {ii }}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {ix }}$	80.58 (2)
$\mathrm{Bi}^{\text {V }}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {ix }}$	134.01 (4)
$\mathrm{Cd} 2{ }^{\mathrm{i}}-\mathrm{Ba} 2-\mathrm{Bi}^{3}{ }^{\text {ix }}$	98.0 (3)
$\mathrm{Cd} 2{ }^{\text {iv }}-\mathrm{Ba} 2-\mathrm{Bi} 3{ }^{\text {ix }}$	44.8 (3)
$\mathrm{Cd} 2{ }^{\mathrm{ii}}-\mathrm{Ba} 2-\mathrm{Bi} 3{ }^{\text {ix }}$	44.8 (3)
$\mathrm{Cd} 2{ }^{\text {v }}-\mathrm{Ba} 2-\mathrm{Bi}^{3}{ }^{\text {ix }}$	98.0 (3)
$\mathrm{Bi}^{\text {id }}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {ix }}$	54.51 (3)
Bi3 ${ }^{\text {vii }}$ - $\mathrm{Ba} 2-\mathrm{Bi} 3{ }^{\text {ix }}$	80.74 (4)
$\mathrm{Bi} 3{ }^{\text {viii }}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {ix }}$	54.51 (3)
$\mathrm{Bi}^{2}{ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{Bi}^{\text {ii }}$	105.92 (7)
Bi2 ${ }^{\text {i }}$ - $\mathrm{Cd} 1-\mathrm{Bi1}$	112.360 (17)
$\mathrm{Bi} 2{ }^{\text {ii }}-\mathrm{Cd} 1-\mathrm{Bi} 1$	112.360 (17)
$\mathrm{Bi} 2{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Bi}^{1}{ }^{\mathrm{x}}$	112.360 (17)
$\mathrm{Bi} 2{ }^{\text {iii }}-\mathrm{Cd} 1-\mathrm{Bi1}^{\mathrm{x}}$	112.360 (17)
Bil-Cd1- $\mathrm{Bi1}^{\text {x }}$	101.67 (7)
$\mathrm{Bi} 2{ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{Cd} 1^{1{ }^{\text {xi }}}$	124.361 (18)
$\mathrm{Bi}^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{Cd} 1{ }^{\mathrm{xi}}$	55.637 (18)
Bil-Cd1-Cd1 ${ }^{\text {xi }}$	56.755 (18)
Bi1 ${ }^{\mathrm{x}}-\mathrm{Cd} 1-\mathrm{Cd} 1^{\text {xi }}$	123.248 (18)
Bi2 ${ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Cd} 1{ }^{\mathrm{xii}}$	55.636 (18)
$\mathrm{Bi} 2{ }^{\text {ii }}-\mathrm{Cd} 1-\mathrm{Cd1}{ }^{\text {xii }}$	124.361 (18)
$\mathrm{Bi} 1-\mathrm{Cd} 1-\mathrm{Cd} 1{ }^{\text {xii }}$	123.248 (18)

$\mathrm{Bi} 1^{\mathrm{ii}}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {vii }}$
$\mathrm{Bil}^{\mathrm{V}}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {vii }}$
$\mathrm{Cd} 2{ }^{\mathrm{i}}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {vii }}$
$\mathrm{Cd} 2{ }^{\text {iv }}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {vii }}$
$\mathrm{Cd} 2^{\mathrm{ii}}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {vii }}$
$\mathrm{Cd} 2^{\mathrm{v}}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {vii }}$
$B i 3^{\text {vi }}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {vii }}$
$\mathrm{Bil}^{\text {iv }}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {viii }}$
$\mathrm{Bi} 1^{\mathrm{i}}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {viii }}$
$\mathrm{Bi}^{\mathrm{ii}}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {viii }}$
$\mathrm{Bi}^{\mathrm{v}}-\mathrm{Ba} 2-\mathrm{Bi}^{\mathrm{viii}}$
$\mathrm{Cd} 2{ }^{\mathrm{i}}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {viii }}$
$\mathrm{Cd} 2^{\text {iv }}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {viii }}$
$\mathrm{Cd} 2^{\mathrm{ii}}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {viii }}$
$\mathrm{Cd} 2^{\mathrm{v}}-\mathrm{Ba} 2-\mathrm{Bi} 3^{\text {viii }}$
$\mathrm{Bi}^{\text {vi }}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {viii }}$
$\mathrm{Bi}^{\text {vii }}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {viii }}$
$\mathrm{Bi} 1^{\mathrm{iv}}-\mathrm{Ba} 2-\mathrm{Bi} 3^{\mathrm{ix}}$
$B i 1^{1}-\mathrm{Ba} 2-\mathrm{Bi}^{\text {ix }}$
$\mathrm{Bi} 1^{\mathrm{ii}}-\mathrm{Ba} 2-\mathrm{Bi} 3^{\mathrm{ix}}$
$\mathrm{Bil}^{\mathrm{V}}-\mathrm{Ba} 2-\mathrm{Bi}^{\mathrm{ix}}$
$\mathrm{Cd} 2{ }^{\mathrm{i}}-\mathrm{Ba} 2-\mathrm{Bi}_{3}{ }^{\mathrm{ix}}$
$\mathrm{Cd} 2{ }^{\mathrm{iv}}-\mathrm{Ba} 2-\mathrm{Bi} 3{ }^{\mathrm{ix}}$
$\mathrm{Cd} 2^{\mathrm{v}}-\mathrm{Ba} 2-\mathrm{Bi} 3^{\mathrm{ix}}$
$\mathrm{Bi} 3^{\mathrm{vi}}-\mathrm{Ba} 2-\mathrm{Bi} 3^{\mathrm{ix}}$
$B i 3{ }^{\text {vii }}-\mathrm{Ba} 2-\mathrm{Bi} 3^{\mathrm{ix}}$
$B 13{ }^{\text {viil }}-\mathrm{Ba} 2-\mathrm{Bi}^{\mathrm{ix}}$
Bi2 $2^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Bi} 1$
$\mathrm{Bi}^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{Bi} 1$
$B \mathrm{Bi}^{1}-\mathrm{Cd} 1-\mathrm{Bil}^{\mathrm{x}}$
Bi1-Cd1- $\mathrm{Bil}^{\mathrm{X}}$
$\mathrm{Bi} 2^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Cd} 1^{\mathrm{xi}}$
$\mathrm{Bi}^{2 \mathrm{ii}}-\mathrm{Cd} 1-\mathrm{Cd} 1^{\mathrm{xi}}$
Bil-Cd1-Cd1 ${ }^{\mathrm{xi}}$
$\mathrm{Bi}^{\mathrm{x}}-\mathrm{Cd} 1-\mathrm{Cd} 1^{\mathrm{xi}}$
$\mathrm{Bi}^{2}{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Cd} 1^{\mathrm{xii}}$
$\mathrm{Bi}^{2}{ }^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{Cd} 1^{\mathrm{xii}}$
123.248 (18)
134.01 (4)
80.58 (2)
44.8 (3)
98.0 (3)
98.0 (3)
44.8 (3)
54.51 (3)
80.58 (2)
134.01 (4)
134.01 (4)
80.58 (2)
98.0 (3)
44.8 (3)
98.0 (3)
44.8 (3)
54.51 (3)
80.58 (2)
134.01 (4)
80.58 (2)
134.01 (4)
98.0 (3)
44.8 (3)
44.8 (3)
98.0 (3)
54.51 (3)
80.74 (4)
54.51 (3)
105.92 (7)
112.360 (17)
112.360 (17)
101.67 (7)
55.637 (18)
56.755 (18)
123.248 (18)
55.636 (18)
123.248 (18)

$\mathrm{Ba} 1^{\text {iv }}-\mathrm{Bi} 2-\mathrm{Ba} 1^{\text {ii }}$	75.81 (4)
$\mathrm{Ba} 1^{\mathrm{i}}-\mathrm{Bi} 2-\mathrm{Ba} 1^{\mathrm{ii}}$	75.81 (4)
$\mathrm{Ba} 1^{\mathrm{v}}-\mathrm{Bi} 2-\mathrm{Ba} 1^{\text {ii }}$	120.64 (8)
$\mathrm{Cd} 2-\mathrm{Bi} 3-\mathrm{Cd} 2{ }^{\mathrm{xv}}$	62.5 (9)
$\mathrm{Cd} 2-\mathrm{Bi} 3-\mathrm{Cd} 2^{\mathrm{x}}$	117.5 (9)
$\mathrm{Cd} 2{ }^{\mathrm{xv}}-\mathrm{Bi} 3-\mathrm{Cd} 2^{\mathrm{x}}$	180.0 (9)
Cd2-Bi3-Cd2 ${ }^{\text {xviii }}$	179.997 (2)
$\mathrm{Cd} 2{ }^{\mathrm{xv}}-\mathrm{Bi} 3-\mathrm{Cd} 2^{\mathrm{xviii}}$	117.5 (9)
$\mathrm{Cd} 2{ }^{\mathrm{x}}-\mathrm{Bi} 3-\mathrm{Cd} 2{ }^{\text {xviii }}$	62.5 (9)
$\mathrm{Cd} 2-\mathrm{Bi} 3-\mathrm{Bi}^{\text {xii }}$	127.2 (2)
$\mathrm{Cd} 2{ }^{\text {xv }}-\mathrm{Bi} 3-\mathrm{Bi} 3{ }^{\text {xii }}$	127.2 (2)
$\mathrm{Cd} 2{ }^{\mathrm{x}}-\mathrm{Bi} 3-\mathrm{Bi} 3{ }^{\text {xii }}$	52.8 (2)
$\mathrm{Cd} 2{ }^{\text {xviii }}-\mathrm{Bi} 3-\mathrm{Bi}^{\text {xii }}$	52.8 (2)
$\mathrm{Cd} 2-\mathrm{Bi} 3-\mathrm{Bi} 3{ }^{\text {xi }}$	52.8 (2)
$\mathrm{Cd} 2{ }^{\mathrm{xv}}-\mathrm{Bi} 3-\mathrm{Bi}^{\text {xi }}$	52.8 (2)
$\mathrm{Cd} 2{ }^{\mathrm{x}}-\mathrm{Bi} 3-\mathrm{Bi}^{3 \mathrm{xi}}$	127.2 (2)
$\mathrm{Cd} 2{ }^{\text {xviii }}-\mathrm{Bi} 3-\mathrm{Bi}^{\text {xi }}$	127.2 (2)
Bi3 ${ }^{\text {xii }}-\mathrm{Bi} 3-\mathrm{Bi} 3{ }^{\text {xi }}$	180.0
$\mathrm{Cd} 2-\mathrm{Bi} 3-\mathrm{Bi}^{\text {xiv }}$	127.2 (2)
$\mathrm{Cd} 2{ }^{\text {xv }}-\mathrm{Bi} 3-\mathrm{Bi}^{3 \mathrm{xiv}}$	127.2 (2)
$\mathrm{Cd} 2{ }^{\mathrm{x}}-\mathrm{Bi} 3-\mathrm{Bi}^{\text {xiv }}$	52.8 (2)
$\mathrm{Cd} 2{ }^{\text {xviii }}-\mathrm{Bi} 3-\mathrm{Bi}^{\text {xiv }}$	52.8 (2)
Bi3 ${ }^{\text {xii }}-\mathrm{Bi} 3-\mathrm{Bi}^{\text {xiv }}$	90.0
Bi3 ${ }^{\text {xi }}-\mathrm{Bi} 3-\mathrm{Bi}^{\text {xiv }}$	90.0
Cd2-Bi3-Bi3 ${ }^{\text {xiii }}$	52.8 (2)
$\mathrm{Cd} 2{ }^{\text {xv }}-\mathrm{Bi} 3-\mathrm{Bi}^{\text {xiii }}$	52.8 (2)
$\mathrm{Cd} 2{ }^{\mathrm{x}}-\mathrm{Bi} 3-\mathrm{Bi}^{\text {xiii }}$	127.2 (2)
$\mathrm{Cd} 2{ }^{\text {xviii }}-\mathrm{Bi} 3-\mathrm{Bi}^{\text {xiii }}$	127.2 (2)
$\mathrm{Bi}^{\text {xii }}-\mathrm{Bi} 3-\mathrm{Bi}^{\text {xiii }}$	90.0
Bi3 ${ }^{\text {xi }}-\mathrm{Bi} 3-\mathrm{Bi}^{\text {xiii }}$	90.0
$\mathrm{Bi} 3{ }^{\text {xiv }}-\mathrm{Bi} 3-\mathrm{Bi}^{\text {xiii }}$	180.0
$\mathrm{Cd} 2-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {i }}$	66.7 (3)
$\mathrm{Cd} 2{ }^{\text {xv }}-\mathrm{Bi} 3-\mathrm{Ba} 2^{\text {i }}$	113.3 (3)
$\mathrm{Cd} 2{ }^{\mathrm{x}}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\mathrm{i}}$	66.7 (3)
$\mathrm{Cd} 2{ }^{\text {xviii }}-\mathrm{Bi} 3-\mathrm{Ba} 2^{\mathrm{i}}$	113.3 (3)
$\mathrm{Bi} 3{ }^{\text {xii }}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {i }}$	62.743 (13)
$\mathrm{Bi} 3{ }^{\text {xi }}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {i }}$	117.257 (13)
	117.257 (13)
$\mathrm{Bi}^{3 \mathrm{xiii}}-\mathrm{Bi} 3-\mathrm{Ba} 2^{\mathrm{i}}$	62.743 (13)
$\mathrm{Cd} 2-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {xix }}$	113.3 (3)
$\mathrm{Cd} 2{ }^{\text {xv }}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {xix }}$	66.7 (3)

Bi1 ${ }^{\mathrm{x}}-\mathrm{Cd} 1-\mathrm{Cd1}{ }^{\text {xii }}$	56.755 (18)	$\mathrm{Cd} 22^{\mathrm{x}}-\mathrm{Bi} 3-\mathrm{Ba} 2^{\mathrm{xix}}$	113.3 (3)
$\mathrm{Cd1}{ }^{\text {xi }}-\mathrm{Cd} 1-\mathrm{Cd} 1^{\text {xii }}$	180.0	$\mathrm{Cd} 2{ }^{\text {xviii }}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {xix }}$	66.7 (3)
$\mathrm{Bi} 2{ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{Cd} 1{ }^{\text {xiii }}$	55.637 (18)	Bi3 ${ }^{\text {xii }}-\mathrm{Bi} 3-\mathrm{Ba}^{\text {xix }}$	117.257 (13)
$\mathrm{Bi} 2^{\text {ii }}-\mathrm{Cd} 1-\mathrm{Cd1}{ }^{\text {xiii }}$	124.361 (18)	$B \mathrm{Bi}{ }^{\text {xi }}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {xix }}$	62.743 (13)
Bi1-Cd1-Cd1 ${ }^{\text {xiii }}$	56.755 (18)	$\mathrm{Bi}^{\text {xiv }}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {xix }}$	62.743 (13)
$\mathrm{Bi1}^{\mathrm{x}}$ - $\mathrm{Cd} 1-\mathrm{Cd1}{ }^{\text {xiii }}$	123.248 (18)	$\mathrm{Bi} 3{ }^{\text {xiii }}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {xix }}$	117.257 (13)
$\mathrm{Cd1}{ }^{\text {xi }}-\mathrm{Cd} 1-\mathrm{Cd} 1^{\text {xiii }}$	90.0	$\mathrm{Ba} 2{ }^{\mathrm{i}}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {xix }}$	180.00 (4)
$\mathrm{Cd} 1{ }^{\text {xii }}-\mathrm{Cd} 1-\mathrm{Cd} 1^{\text {xiii }}$	90.0	$\mathrm{Cd} 2-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\mathrm{xx}}$	113.3 (3)
$\mathrm{Bi} 2{ }^{\text {i }}-\mathrm{Cd} 1-\mathrm{Cd} 1{ }^{\text {xiv }}$	124.361 (18)	$\mathrm{Cd} 2{ }^{\text {xv }}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {xx }}$	66.7 (3)
$\mathrm{Bi} 2{ }^{\text {ii }}-\mathrm{Cd} 1-\mathrm{Cd1}{ }^{\text {xiv }}$	55.637 (18)	$\mathrm{Cd} 22^{\mathrm{x}}-\mathrm{Bi} 3-\mathrm{Ba} 2^{\mathrm{xx}}$	113.3 (3)
Bil-Cd1- $\mathrm{Cd1}^{\text {xiv }}$	123.248 (18)	$\mathrm{Cd} 2{ }^{\mathrm{xviii}}-\mathrm{Bi} 3-\mathrm{Ba} 2^{\mathrm{xx}}$	66.7 (3)
$\mathrm{Bi1}^{\mathrm{x}}-\mathrm{Cd} 1-\mathrm{Cd1}{ }^{\text {xiv }}$	56.755 (18)	$\mathrm{Bi} 3{ }^{\mathrm{xii}}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\mathrm{xx}}$	62.743 (13)
$\mathrm{Cd1}{ }^{\mathrm{xi}}-\mathrm{Cd} 1-\mathrm{Cd} 1^{\text {xiv }}$	90.0	Bi3 ${ }^{\text {xi }}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {xx }}$	117.257 (13)
$\mathrm{Cd} 1{ }^{\text {xii }}-\mathrm{Cd} 1-\mathrm{Cd} 1^{\text {xiv }}$	90.0	$\mathrm{Bi}{ }^{\mathrm{xiv}}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\mathrm{xx}}$	117.257 (13)
$\mathrm{Cd} 1{ }^{\text {xiii }}-\mathrm{Cd} 1-\mathrm{Cd} 1{ }^{\text {xiv }}$	180.0	$\mathrm{Bi} 3{ }^{\text {xiii }}-\mathrm{Bi} 3-\mathrm{Ba}^{\text {xx }}$	62.743 (13)
$\mathrm{Bi} 2{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Ba} 2{ }^{\text {ii }}$	163.77 (5)	$\mathrm{Ba} 2{ }^{\mathrm{i}}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\mathrm{xx}}$	99.26 (4)
$\mathrm{Bi} 22^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{Ba} 2{ }^{\text {ii }}$	90.31 (3)	$\mathrm{Ba} 2{ }^{\mathrm{xix}}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\mathrm{xx}}$	80.74 (4)
$\mathrm{Bi} 1-\mathrm{Cd} 1-\mathrm{Ba} 2{ }^{\text {ii }}$	59.59 (3)	$\mathrm{Cd} 2-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {ii }}$	66.7 (3)
$\mathrm{Bi} 1^{\mathrm{x}}-\mathrm{Cd} 1-\mathrm{Ba} 2{ }^{\text {ii }}$	59.59 (3)	$\mathrm{Cd} 2{ }^{\mathrm{xv}}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {ii }}$	113.3 (3)
$\mathrm{Cd1}{ }^{\text {xi}}-\mathrm{Cd} 1-\mathrm{Ba} 2{ }^{\text {ii }}$	64.988 (15)	$\mathrm{Cd} 2{ }^{\mathrm{x}}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {ii }}$	66.7 (3)
$\mathrm{Cd} 1{ }^{\text {xii }}-\mathrm{Cd} 1-\mathrm{Ba} 2{ }^{\text {ii }}$	115.015 (15)	$\mathrm{Cd} 2{ }^{\text {xviii }}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {ii }}$	113.3 (3)
$\mathrm{Cd} 1{ }^{\text {xiii }}-\mathrm{Cd} 1-\mathrm{Ba} 22^{\text {ii }}$	115.015 (15)	$\mathrm{Bi} 3{ }^{\text {xii }}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {ii }}$	117.257 (13)
$\mathrm{Cd1}{ }^{\text {xiv }}-\mathrm{Cd} 1-\mathrm{Ba} 22^{\text {ii }}$	64.988 (15)	$\mathrm{Bi} 3{ }^{\text {xi }}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {ii }}$	62.743 (13)
$\mathrm{Bi} 2{ }^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Ba} 2{ }^{\mathrm{i}}$	90.31 (3)	$\mathrm{Bi} 3{ }^{\text {xiv }}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {ii }}$	62.743 (13)
$\mathrm{Bi} 2{ }^{\text {ii }}-\mathrm{Cd} 1-\mathrm{Ba} 2{ }^{\text {i }}$	163.77 (5)	Bi3 ${ }^{\text {xiii }}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {ii }}$	117.257 (13)
$\mathrm{Bi} 1-\mathrm{Cd} 1-\mathrm{Ba} 2{ }^{\text {i }}$	59.59 (3)	$\mathrm{Ba} 2{ }^{\mathrm{i}}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {ii }}$	80.74 (4)
$\mathrm{Bi}{ }^{\mathrm{x}}-\mathrm{Cd} 1-\mathrm{Ba} 2{ }^{\mathrm{i}}$	59.59 (3)	$\mathrm{Ba} 22^{\mathrm{xix}}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {ii }}$	99.26 (4)
$\mathrm{Cd} 1{ }^{\text {xi}}-\mathrm{Cd} 1-\mathrm{Ba} 2^{\text {i }}$	115.015 (15)	$\mathrm{Ba} 2{ }^{\mathrm{xx}}-\mathrm{Bi} 3-\mathrm{Ba} 2{ }^{\text {ii }}$	180.00 (4)
$\mathrm{Cd} 1{ }^{\text {xii }}-\mathrm{Cd} 1-\mathrm{Ba} 2{ }^{\text {i }}$	64.988 (15)	$\mathrm{Ba} 1-\mathrm{O}-\mathrm{Ba} 1^{\text {i }}$	102.38 (5)
$\mathrm{Cd} 1{ }^{\text {xiii }}-\mathrm{Cd} 1-\mathrm{Ba} 2^{\text {i }}$	64.988 (15)	$\mathrm{Ba} 1-\mathrm{O}-\mathrm{Ba} 1^{\mathrm{x}}$	124.84 (12)
$\mathrm{Cd} 1{ }^{\text {xiv }}-\mathrm{Cd} 1-\mathrm{Ba} 2^{\mathrm{i}}$	115.015 (15)	$\mathrm{Ba} 1^{\mathrm{i}}-\mathrm{O}-\mathrm{Ba} 1^{\mathrm{x}}$	102.38 (5)
$\mathrm{Ba} 2{ }^{\mathrm{ii}}-\mathrm{Cd} 1-\mathrm{Ba} 2{ }^{\text {i }}$	73.45 (5)	$\mathrm{Ba} 1-\mathrm{O}-\mathrm{Ba} 1^{\text {ii }}$	102.38 (5)
Bi1-Cd2-Bi3 ${ }^{\text {xi }}$	121.2 (4)	$\mathrm{Ba} 1^{\mathrm{i}}-\mathrm{O}-\mathrm{Ba} 1^{\text {ii }}$	124.84 (12)
Bi1-Cd2-Bi3 ${ }^{\text {iii }}$	121.2 (4)	$\mathrm{Ba} 1^{\mathrm{x}}-\mathrm{O}-\mathrm{Ba} 1^{\text {ii }}$	102.38 (5)

Symmetry codes: (i) $-x+1 / 2,-y+1 / 2,-z+1 / 2$; (ii) $-x-1 / 2,-y+1 / 2,-z+1 / 2$; (iii) $x, y-1, z$; (iv) $-x-1 / 2,-y-1 / 2,-z+1 / 2$; (v) $-x+1 / 2$, $-y-1 / 2,-z+1 / 2$; (vi) $-y+1 / 2, x+1 / 2, z+1 / 2$; (vii) $x+1 / 2, y-1 / 2, z+1 / 2$; (viii) $-y+1 / 2, x-1 / 2, z+1 / 2$; (ix) $x-1 / 2, y-1 / 2, z+1 / 2$; (x) $x, y+1$, z; (xi) $-y, x, z$; (xii) $-y+1, x+1, z$; (xiii) $-y+1, x, z$; (xiv) $-y, x+1, z$; (xv) $-x,-y,-z$; (xvi) $y-1 / 2,-x+1 / 2,-z+1 / 2$; (xvii) $y-1 / 2,-x-1 / 2$, $-z+1 / 2$; (xviii) $-x,-y+1,-z$; (xix) $x-1 / 2, y+1 / 2, z-1 / 2$; (xx) $x+1 / 2, y+1 / 2, z-1 / 2$.

Fig. 1

Fig. 2

